Ion Trap Quantum Information Processing in Innsbruck Current Status and Future Plans

Rainer Blatt

Institute of Experimental Physics, University of Innsbruck, Institute of Quantum Optics and Quantum Information, Austrian Academy of Sciences

- Ca⁺ for quantum information processing: qubits
- Ca⁺ experiments, techniques and state of art
- CNOT gate operation, error budget
- interfacing quantum information: cavity QED with Ca⁺
- segmented ion traps and future work

QUEST QGATES

Industrie

Level scheme of Ca+ qubit on narrow S - D quadrupole transition $\tau \approx 1 s$ P_{3/2} 854 nm P_{1/2} 866 nm **D**_{5/2} 393 nm 397 nm 729 nm

⁴⁰Ca+: Zeeman substates

linear Zeeman effect, requires decoherence free subspace

Level scheme of ⁴³Ca⁺

⁴³Ca+: manipulation and detection

String of ⁴⁰Ca⁺ ions in a linear Paul trap

Innsbruck linear ion trap (2000)

 $\omega_z \approx 0.7 - 2 \text{ MHz}$ $\omega_{x,y} \approx 1.5 - 4 \text{ MHz}$

Spectroscopy of the $S_{1/2} - D_{5/2}$ transition

Zeeman structure in non-zero magnetic field:

+ vibrational degrees of freedom

Addressing of individual ions

- inter ion distance: ~ 4 μm
- addressing waist: ~ 2.5 μm
- < 0.1% intensity on neighbouring ions

Detection of 6 individual ions

Coherent state manipulation

carrier and sideband Rabi oscillations with Rabi frequencies

$$\Omega$$
, $\eta\Omega\sqrt{n+1}$

 $\eta = kx_0$ Lamb-Dicke parameter

Ca+ ion trap quantum information processing

achievements

Deutsch-Jozsa algorithm	Nature 421, 48 (2003)
---	-----------------------

Cirac-Zoller CNOT gate operation	Nature 422,	408 ((2003))
--	-------------	-------	--------	---

GHZ, W states, conditional	ıl operations	Science 304, 1478 (2	.004)
--	---------------	----------------------	-------

Teleportation
 Nature 429, 734 (2004)

Quantum state tomographyPRL 92, 220402 (2004)

Long-lived entanglement
 Appl. Phys. B 81, 151 (2005)

4-8 qubit entanglement
 Nature 438, 643 (2005)

Precision spectroscopy with entangled states to be published

Quantum Process Tomography to be published

Six-Ion W-state

$$\Psi_6 = \frac{1}{\sqrt{6}} (|DDDDDS\rangle + |DDDDSD\rangle + |DDDSDD\rangle + |DDSDDD\rangle + |DSDDDD\rangle + |SDDDDD\rangle)$$

 $|
ho_{ij}|$

Genuine 6-particle entanglement!

- 6-particle entanglement can be distilled from the state (W. Dür)
- Entanglement witness detects 6-particle entanglement (O. Gühne)

22.4.2005

error bars in the reconstruction process ?

.

729 settings, measurement time ~ 40 min.

Eight - ion W state

Future Ca+ experiments

- entanglement swapping
- entanglement purification
- error correction protocols (3, 5, 7 ions)
- logical qubit
- algorithms (Shor, Grover)
- scalability
- the "real" quantum computer ...

BUT everything relies crucially on the availability of a high fidelity two-ion gate operation.

The Cirac-Zoller CNOT gate operation with 2 ions

allows the realization of a *universal* quantum computer!

F. Schmidt-Kaler et al., Nature **422**, 408 (2003)

Cirac - Zoller two-ion controlled-NOT operation

Individual ion detection

Experimental fidelity of Cirac-Zoller CNOT operation

CNOT error budget (November 2002)

Error source	Magnitude	Fidelity loss
Frequency noise (fast)	< 200 Hz (FWHM)	< 10 %
Frequency noise (slow)	~ 450Hz (FWHM)	~ 1 %
Laser intensity noise	3 % peak to peak	0.1 %
Addressing error (can be corrected for partially)	5 % in Rabi frequency (at neighbouring ion)	3 %
Off resonant excitations	for $t_{gate} = 600 \ \mu s$	4 %
Residual thermal excitation	<n>bus < 0.02 <n>spec = 6</n></n>	< 2 % 0.4 %
Total	November 2002	~ 20 %

Improvements since then

Technical improvements:

- Laser frequency stability (729 nm)
- Reduced magnetic field noise
- Addressing error correction
- Pulse shaping of composite pulses
- Frequency selective optical pumping
- Automatic calibration and experimental control

Physical improvements:

- Encoding in decoherence free subspace
- Encoding of different qubit (⁴³Ca⁺)
- Tomography for analysis

Linewidth of 729 nm laser

Parity measurement for state: $|SS'\rangle + |DD'\rangle$

Coherence of single qubits (S – D transition)

New supercavity for 729 nm laser

Vertically mounted high finesse cavity (Jun Ye, Mark Notcutt; JILA)

Finesse = $481\ 000\ (4000)$

Magnetic field noise (~ frequency fluctuations) 1

without active stabilization:

9mG peak-to-peak @ 50 Hz at the ion, Ramsey measurement, scanning through the AC-line phase

with active stabilization (Spicer SC12, two AC sensors, 5Hz-20KHz): best result 0.4 mG peak-to-peak @ 50 Hz at the ion, noise suppression of factor ~20 at site of one of the sensors much higher suppression:

- spectrum contains components that are not multiples of the line frequency,
- cannot eliminate this noise completely by triggering our experiment to the line phase

Magnetic field noise (~ frequency fluctuations) 2

noise cancellation using interpolating sensors

trap

sensor

Higher-order gradients prevent the two-sensor system from reaching its full potential;

field lines may get warped by vacuum chamber (needs to be investigated), nearby components and by field coils

Addressing error of individual ions

Addressing error

example: $\varepsilon = 50\%$

Correction of the addressing error

example: $\varepsilon = 50\%$

Addressing error correction (November 2005)

$$\varepsilon_{\rm add} = \frac{\Omega_{\rm not~addressed}}{\Omega_{\rm addressed}}$$

Correction possible to much better than 1% residual error on neighbouring ion

Pulse shaping for improved state manipulation

Motional decoherence, COM and stretch mode

but....: heating times are similar ~ 100 ms/phonon

Heating time of stretch mode in 2-ion crystal

The motional heating rate of the stretch mode is much lower than the dephasing rate:

Experiment:

- 1. Prepare motional ground state
- 2. wait 20 ms
- 3. Drive Rabi oscillations on blue stretch mode sideband

Vibrational quantum number still close to n=0.

Work towards improved gate operations

addressing errors:
 avoid using composite pulses

off-resonant excitations:
 avoid using shaped pulses

magnetic field fluctuations:
 minimize using active stabilization

 laser frequency noise: minimize using improved stabilization partially implemented

 fiber phase noise: avoid using fiber noise cancellation

Rabi oscillations

Rabi oscillations of a single ion within a two-ion string

data points: average of 600 measurements

Quantum Process Tomography

$$\rho_{\text{out}} = \sum \chi_{ij} E_i \rho_{\text{in}} E_j^{\dagger}$$

$$E_i = A_i \otimes A_j$$
$$A_i \in \{I, \sigma_x, \sigma_y, \sigma_z\}$$

$$\chi_{ij}$$

characterizes gate operation completely

Quantum Process Tomography

In the basis $\{I,X,Y,Z\} \equiv \{I,\sigma_x,-i\sigma_y,\sigma_z\}$

we obtain

$$U_{\mathsf{CNOT}} = -\frac{1}{2} \left(I \otimes I + iI \otimes Y - Z \otimes I + iZ \otimes Y \right)$$

$$= \left(egin{array}{cccc} 0 & i & 0 & 0 \ -i & 0 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & -1 \end{array}
ight)$$

Quantum Process Tomography: CNOT

The transfer matrix χ obtained by quantum process tomography is:

Fidelity: ~ 76%

CNOT error budget (February 2006)

Error source	Magnitude	Fidelity loss
Frequency noise (fast)	< 160 Hz (FWHM)	< 5 %
Frequency noise (slow)	~ 160 Hz (FWHM)	~ 0.6 %
Laser intensity noise	3 % peak to peak	0.1 %
Addressing error (can be corrected for partially)	3 % in Rabi frequency (at neighbouring ion)	1 %
Off resonant excitations	for $t_{gate} = 600 \ \mu s$	- (Pulse shaping)
Residual thermal excitation	<n>bus < 0.02 <n>spec = 6</n></n>	< 2 % 0.4 %
Total	February 2006	~ 9 %

Open questions

Error modelling

- → gate fidelity of ~ 90 %
- Experiment (gate tomography) → gate fidelity of ~ 75 80 %

What are we missing?

What improvements can be done?

- further technical improvements (laser linewidth, magnetic field)
- yet better measurements, characterization required
- better physical solutions necessary (less sensitive states, better encoding, error correcting sequences)
 - → e.g. decoherence free subspaces (DFS)

Different Decoherence-free Subspaces (DFS)

DFS: encoding quantum information in superpositions

sensitive to	laser frequency	magnetic field	excited state lifetime
$ S\rangle + D\rangle$	\otimes	\otimes	\otimes
$ SD\rangle + DS\rangle$			\otimes
$ SS'\rangle + S'S\rangle$			
$ SS'\rangle + DD'\rangle$	\otimes	0	\otimes

Decoherence-free Bell states

$$\Psi_{-} = \frac{1}{\sqrt{2}}(|SD\rangle - |DS\rangle)$$

decoherence-time:

 $0.5 \times 1.05(15) s$

Decoherence-free Bell states

Hiding states in S, S' states avoids decoherence from spontaneous emission

Robust entanglement

Level scheme of ⁴³Ca⁺

⁴³Ca⁺ Apparatus

Raman R1, B1

opt. pumping

Current status of the ⁴³Ca⁺ experiment

Detection system completed,
 count rates two times higher than in "old" ⁴⁰Ca⁺ setup.

Compensation of micromotion was done

Photoionization loading of ⁴³Ca⁺ works

Doppler cooling of ⁴³Ca⁺ ,
 Single ⁴³Ca⁺ ions, strings of ⁴³Ca⁺ ions are routinely prepared

Setup of shelving laser and Raman laser is finished

Work in progress

- Optimization of laser cooling (the whole spiel)
- Spectroscopy on the shelving transition
- Raman transitions between hyperfine ground states (soon)

Innsbruck segmented trap (2005)

 electrode design similar as in 2004

 assembly as sandwich on chip carrier

work by

- ► Felicity Splatt
- Wolfgang Hänsel

Innsbruck ion chip (2005)

Assembly of the chip trap

Assembly of Innsbruck ion chip (2005)

top window

ion chip

ceramic spacer

conflat flange

F. Splatt, W. Hänsel

Flange mount

Cross sectional view of trap mounted in flange

(schematic only - not to scale)

(to scale)

F. Splatt, 2006

Cross section of mounted flange

Entire vacuum apparatus

Qubit interfacing: transferring quantum information

- Transfer quantum state of the ion to cavity photon: qubit interface
- Create superposition photon state (STIRAP)
- Detect cavity output and ion state

Cavity and ion trap (2004)

Cavity and ion trap as single photon source

2 cm

details:

C. Maurer, C. Becher et al. New Journ. Physics **6**, 94 (2004) Finesse ~ 80000

waist ~ 13 μm (nearly concentric cavity)

expect ~ 20 kHz single photons with ~ 90% emission into cavity

Vision: going smaller, merging with ion chip

Achieve strong coupling: small mode volumes

Estimate for $g = \Gamma = \kappa$: cavity length L = 1mm

Finesse F = 6.800

waist size $w_0 = 6.5 \mu m$

Quantum information processing with Ca+ in Innsbruck

- state of the art: up to 8 qubits, flexible operations
- long lived entanglement (~ 20 s)
- 4 8 particle W-state, full tomography
- error budget, technical improvements
- 43Ca+ work in progress
- segmented trap work
- cavity QED towards interfacing ion trap processors

Future:

- optimization of Cirac-Zoller gate (high priority!)
 achieve more CNOT gate operations
- error correction protocols with three and five qubits
- implementation with ⁴³Ca⁺, logical qubits + scalability

Advertising posters of the Innsbruck experiments

Quantum Process Tomography	M22
T. Körber	
 43Ca⁺ experiment 	M14
J. Benhelm	
Spectroscopy with entangled states	M09
C. Roos	
Multipartite entanglement	M12
H. Häffner	
Segmented ion trap project	T13
W. Hänsel	

Feedback control of a single ion

J. Eschner

M06

The international team 2005

QUEST QGATES

Industrie Tirol

IQI GmbH

bm:bwk

